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1. Competitive Restrictions in Professional Sports

Professional sports leagues in the United States coordinate the business decisions of

their member ¯rms to an extraordinary degree. Establishing a set of rules and a common

schedule clearly require coordinating the output decisions of existing ¯rms, but typical league

activities go well beyond this minimal level. Leagues establish and award exclusive territorial

franchises, and when new franchises are established their sale is performed by the league,

which distributes the proceeds among its members. The movement of franchises from one

area to another is also regulated by leagues, although to di®erent degrees in di®erent sports.

Even more exceptional are the various restrictions on inter-team bidding for players that

have been features of professional leagues for most of their existence. In this paper, we

analyze the e®ects of entry restrictions and bidding restrictions to determine whether such

practices, in addition to increasing the pro¯ts of existing teams, might confer any bene¯ts

upon the public at large.

While the establishment of regional franchises seems today to be virtually a de¯ning

feature of a sports league, the early days of professional baseball in the U.S. provide an

example of organized play without exclusive territories. According to Scully (1989), by 1870

the National Association of Baseball Players counted over 400 amateur and professional

teams among its members. In 1871, the professional teams withdrew to form the National

Association of Professional Baseball Players. Over the next ¯ve years, 25 teams joined the

professional association, although most were not ¯nancially viable. It was the formation of

the National League in 1876 that introduced exclusive territorial franchises to professional

baseball. Other innovations in league structure were the stipulation of a minimum city size

for entry into the league and the payment of 30 percent of attendance revenue to visiting

teams.

Within three years of its inception the National League developed a form of inter-team

cooperation that would ultimately prove far more controversial than restricting entry by new

teams. That innovation came to be known as the \reserve clause," which essentially granted
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each team exclusive rights to a number of players on its roster. Scully (p. 2) notes that

\Club roster costs fell signi¯cantly after the assignment to the clubs of reservations rights

to players. During the 1880s, for the ¯rst time, many clubs began to make a pro¯t, and a

semblance of stability emerged in the league."

Baseball's reserve clause lasted for 100 years before the advent of an essentially unre-

stricted market for players who have completed a minimum amount of time in the major

leagues. Ironically, today's baseball player market is one of the least restricted of the major

professional sports' labor markets (although the members of the American and National

Leagues have been found guilty of less explicit but quite e®ective collusion in their bidding

practices after the demise of the reserve clause). Until recently, National Football League

players were allowed only limited free agency, and even today players with fewer than ¯ve

years of league experience have only limited mobility. In addition, there are now restrictions

on the total of each team's player salaries. Player transactions in the National Basketball

Association are not directly restricted, but teams' total salaries are regulated. These re-

strictions on the salaries and movement of players across teams were negotiated in collective

bargaining agreements between players' associations and the respective leagues.

Other restrictions on the market for players exist in all the major professional U.S.

sports. One of these is a limit on the total number of players a team may carry on its

roster. Such limits are taken for granted today, but were not in e®ect in the early days of

professional baseball. For example, in 1909 Brooklyn had 61 reserved players on its roster

while Washington had 29 (Scully, p. 4). Another seemingly universal practice is the use

of so-called player drafts to assign to teams the initial rights to negotiate with players that

have not been on the rosters of any other teams.

Practice similar to those common in professional sports would most likely be struck down

as violations of the antitrust laws if they were practiced by other industries. They persist

in the sports industry either by legislative exemption from the antitrust laws or, in the

case of baseball, because the Supreme Court has ruled that those laws do not pertain. One

justi¯cation for these exemptions has been that they are necessary to enable teams located in
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smaller markets to compete with teams from large markets in acquiring players, commonly

known as the problem of competitive balance.

Virtually all economic analyses of competitive balance in sports leagues take the number

of teams as ¯xed (El Hodiri and Quirk 1971, Quirk and El Hodiri 1974, Whitney 1993), and

focus on the allocation of player talent across these teams. The presumption is that a chron-

ically unequal distribution of talent is inherently undesirable. It is not clear, however,that

aggregate welfare in these models is lower if teams from large cities win more games or

championships than teams from smaller ones. After all, large cities have more fans deriving

utility from the success of their teams. To see this in a di®erent way, suppose all cities have

equal populations, and di®er only in the intensity of their fans' demand for winning. Would

it be suboptimal for the city with the most devoted fans to win more often? At a minimum,

competitive balance is not Pareto-superior to large-city domination, unless fans have a taste

for balance per se.

In the paper we allow the number of teams to be determined endogenously. This allows

us to examine the welfare consequences of certain deviations from competitive equilibria in a

simple model in which optimal allocations are well de¯ned. We ¯nd that if sports fans derive

satisfaction simply from watching a talented home team,then the competitive equilibrium is

e±cient. However, if fans also care about their favorite team's overall performance relative

to the rest of the league, then the unrestricted competitive equilibrium will generally not

be e±cient. Under plausible assumptions, too few teams will survive in equilibrium. Re-

strictions on inter-team competition similar to those actually observed can improve social

welfare.1

As noted above, the key condition determining the optimality of competitive economic

organization in professional sports is whether fans have a preference for a winning team over

a non-winning team of equal ability.... Several empirical studies support the plausibility
1The number of teams is related to the issue of competitive balance. In our model all surviving teams

may have identical talent, but some cities will not have teams. Thus, by determining the number of cities
with teams, we in e®ect determine the size of the smallest city that will have a team. If we assume that
in any sized league the largest cities will have teams, then the question \will Seattle and Milwaukee have
teams?" is the same as the question \will there be 26 or 28 teams in the league?"
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of this assumption. Noll (1974), Scully (1989), Whitney (1993), and Zimbalist (1992) all

¯nd that the attendance revenue of a major-league baseball team is positively related to

its standing relative to the other teams in its league, and McCormick (1991) reports the

same result for the teams of the National Basketball Association. This demand for winning

teams generates several externalities that may render the purely competitive equilibrium

suboptimal.

One of the welfare losses due to inter-team competition for players arises for the misal-

location of labor that will occur if the supply of talent to teams is not perfectly inelastic

(Canes, 1974). The marginal value of a player to any one term includes his contribution to

that teams' standing relative to rival teams, but his social value does not include his e®ect

on the relative positions of the various teams. For this reason, competitive bidding for the

talent will cause players to be paid more than the value of the social marginal product, and

the result is that society will have too many professional athletes relative to the optimum.

In this paper we assume that the total pool of talent is exogenously given and that players

have not alternative uses of their time, so our welfare analysis supplements that of Canes.

The second external e®ect of the demand for winning teams is a version of the common-

pool problem. If the added competition from more teams does not su±ciently increase the

satisfaction fans obtain from watching a winning team, then the revenue received by new

entrants is only partially due to the fact that more fans have a local team to follow. Although

the remainder is merely a transfer to new entrants from incumbents, because real costs are

incurred to operate a team, the number of teams necessary to derive expected pro¯ts to zero

is greater than the optimal number. We demonstrate in sections 4.1 and 4.2 the conditions

under which the social optimum can be attained simply by restricting entry of new teams.

The third potential ine±ciency of free competition in professional sports arises if there is

a range of talent levels over which a team encounters increasing returns to talent. Whitney

(1993) discusses the likelihood that this occurs when there is an asymmetric allocation of

talent among teams. We explore this possibility in the context of a symmetric equilibrium

in the market for player talent (section 4.3). We show that entry restrictions generally do
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not yield the social optimum because in equilibrium there are too few teams rather than too

many.

In section 5 we show that, when leagues organize to maximize the joint pro¯ts of their

members when confronting a competitive market for talent, there will always be too few

teams in equilibrium. Inter league competition reduces but does not eliminate this ine±-

ciency. We then show that certain restrictions on teams' bidding for talent can, at least in

principle, induced pro¯t-maximizing leagues to expand to the socially optimal number of

teams.

Finally, in section 6 we recognize that the rules governing athletic competition \on the

¯eld" are themselves endogenous. We ¯nd that the desire of team owners to limit inter-team

bidding for talent can lead them to adopt rules that increase the role of chance in determining

the outcomes of games.

2. Competition for Talent in a Sports League

We study the following stylized model of a sports league. There are a potentially in¯nite

number of teams that might compete in the league. Associated with each team i that

competes is a level of player talent Qi ¸ 0. We follow Quirk and El Hodiri (1974) in de¯ning

the pool of available players in terms of a ¯xed quantity of homogeneous talent units. This

does not mean that all players are identical, since each player may have a di®erent amount of

talent. We denote the total stock of talent as QT , so if there are n teams with positive talent

levels, then
Pn
i=1Qi · QT . This assumption captures in a simple way the likelihood that

the supply of very talented athletes is highly inelastic. It also ensures that the ine±ciencies

we ¯nd are not due to the misallocation of talent among professional sports teams.

Each team i generates two types of attendance, normal attendance, Ai, and bonus at-

tendance, Bi. Normal attendance is a function of team talent, that is, Ai = A(Qi). This

represents fans' preference over the absolute quality of play. It captures, for example, the

fact that attendance at major-league baseball games is far greater than attendance at minor-

league games. We assume the function A has the same shape for all teams, and A is twice
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continuously di®erentiable, strictly increasing and strictly concave in Q for all Q ¸ 0. Also,

we normalize by setting A(0) = 0.

Bonus attendance is a function of relative team performance. Speci¯cally, there is a

performance measure V and a bonus B such that team i receives a bonus attendance of BVi

if its performance level is Vi.2 We assume 0 · Vi · 1 for all teams i, and Vi > 0 only if

Qi > 0. Also, we normalize the Vi so
Pn
i=1 Vi = 1, where n is the number of teams with

Qi > 0.

There are at least two straightforward interpretations of V and B. First, we might

imagine that fans care about where their team ranks in the league. In a league with n

teams, we can assign performance levels V 1; :::; V k to the k teams with the highest winning

percentages, where k may vary with n subject to k · n. These top k teams receive bonus

attendances BV 1; :::; BV k. For example, suppose k = 2, so only the top two terms receive

bonus attendance, and suppose the ¯rst-place ¯nisher receives twice the bonus of the second-

place ¯nisher (so V 1 = 2=3 and V 2 = 1=3). Then Bi = 2B=3 if team i ¯nishes ¯rst, Bi = B=3

if it ¯nishes second, and Bi = 0 otherwise.

Alternatively, we might imagine that fans care about their team's relative winning per-

centage. Then Vi gives the number of games won by team i as a fraction of the total number

of games played by all teams in the league (this is also equal to team i's winning percentage

divided by n=2), and B is the bonus attendance per fraction of games won. Clearly, the Vi

may embody both interpretations simultaneously.

Implicit in this speci¯cation is the assumption that normal attendance is perfectly elastic

with respect to ticket price whenever attendance is less than A(Qi) and perfectly inelastic

at that point. Similarly, bonus attendance is perfectly elastic with respect to ticket price

whenever bonus attendance is less thanB, and perfectly inelastic at that point. We normalize

by setting the reservation price of those who attend games equal to 1. This implies that
2More generally, B might be an arbitrary, increasing function of V . Treating such a general specī cation

adds considerable notational and analytical complication, however, and tends to obscure rather than highlight
our results.
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social welfare is simply equal to total attendance (or revenue) net of social costs.3

From a social point of view, the talent pool QT is costless to use.4 However, associated

with each team is a ¯xed cost C. This re°ects the costs of a stadium, administrative o±ces,

and so on. Clearly, to maximize social welfare all of the talent must be used. Also, since

A is strictly concave for all Q ¸ 0, all teams that are assigned positive talent levels must

be assigned the same talent level. Thus, the problem of maximizing social welfare can be

written as

max
n;Q

nA(Q) +
nX

i=1
BVi ¡ nC s.t. nQ= QT (1)

or, since
Pn
i=1 Vi = 1,

max
Q

[A(Q)¡ C]Q+B (2)

Di®erentiating (1) yields the ¯rst-order condition

A0(Q¤) = [A(Q¤)¡ C ]=Q¤ (3)

That is, Q¤ is chosen so that the marginal value of talent is equal to attendance revenue

minus ¯xed costs, per unit of talent. Figure 1 shows Q¤ graphically. Di®erentiating (1)

twice with respect to Q, it is straightforward to verify that the second-order conditions are

satis¯ed (Q¤ > 0, and A is strictly concave for all Q > 0 by assumption). In fact, Q¤ is

the unique global optimum, since total surplus at Q¤ is strictly positive (A0(Q¤) > 0, so

A(Q¤) > C), and the only other possibility is the corner solution with Q = 0, which yields a

total surplus of zero. The optimal number of teams is n¤ = QT=Q¤. We assume that QT=Q¤

is an integer.5

3There are two alternative assumptions that yield equivalent welfare implications. First, if teams can
perfectly price discriminate, then gross revenue is equal to total consumer willingness to pay. Second, if
there is a stadium capacity constraint that is binding in the relevant range of attendance, then social welfare
is maximized by any price that ¯lls the stadium.

4Alternatively, we might assume that the talent pool costs some amount D, but that D is independent
of the amount of talent used provided the amount used is greater than zero.

5If QT=Q¤ is not an integer, then the solution does not quite satisfy (2) but it is close. Speci¯cally,
the optimum n is either the largest integer less than QT=Q¤, or the smallest integer than QT =Q¤, and the
optimal Q is QT =n.
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Example. A(Q) = Q®, with 0 < ® < 1. Then A0(Q) = ®Q®¡1, so Q¤ satis¯es ®(Q¤)®¡1 =

[(Q¤)® ¡ C ]=Q¤, or Q¤ = [C=(1¡ ®)]1=®. Also, n¤ = QT [(1 ¡ ®)=C ]1¡®. So for example, if

QT = 200, C = 1, and ® = 1=2, then Q¤ = 4 and n¤ = 50.

3. Free Entry in the Absence of a Demand for Winning

Given our assumptions about demand and costs, when there is no bonus attendance a

social optimum is achieved by a decentralized market mechanism.

Let w be the price of a unit of talent, i.e., the wage. Assume that teams are price-takers

in the talent market, paying w for each unit of talent they purchase, and that each team

chooses its talent level to maximize pro¯ts. Teams are local monopolists, and therefore set

ticket price equal to the fans' reservation price (which is 1). Then each team i solves

max
Qi

¼(Qi) = max
Qi

A(Qi) ¡ wQi ¡ C (4)

This yields the ¯rst-order condition A0(Qi) = w, which clearly de¯nes a unique pro¯t-

maximizing choice Qi = QO > 0 , provided that A(QO)¡ wQO > C . If A(QO)¡ wQO < C ,

then the unique pro¯t-maximizing talent level is Qi = 0, and if A(QO) ¡ wQO = C then

either Qi = QO or Qi = 0 is optimal.6

De¯ne an equilibrium as a vector (w; n;Q), where w is the wage, n is the number of teams

competing in the league, and Q = (Q1; :::; Qn) is a vector of talent levels that satis¯es: (i)

for each team i = 1; :::; n, Qi maximizes pro¯ts given w, (ii) all teams i = 1; :::; n earn zero

pro¯ts, and (iii) the market for talent clears, i.e.,
Pn
i=1Qi = QT . The proposition below

shows that when QT=Q¤ is an integer, the unique equilibrium produces a socially optimal

allocation of talent.7

6Note that team i does not take the overall supply of talent into account when making its choice. That
is, it does not worry about the fact that

Pn
i=1 Qi · QT .

7To deal with cases where QT=Q¤ is not an integer, we must revise the de¯nition of equilibrium. The
most natural way to do this is to replace (ii) with the following: (ii)' all teams i = 1; :::; n earn nonnegative
pro¯ts, and (ii)" if the league were to expand then all teams would earn negative pro¯ts, i.e., for all m > n,
if (i) and (iii) are satis¯ed then all teams i = 1; :::; m earn negative pro¯ts. Then the unique equilibrium will
be at the greatest integer less than QT=Q¤ . We ignore these tedious complications, both here and below, by
assuming that the simple equilibrium de¯nitions result in whole number of teams.

8



Proposition 3.1. If B = 0 and QT=Q¤ is an integer, then there is a unique equilibrium

(wO; nO;QO), and this equilibrium satis¯es wO = [A(Q¤)¡ C]=Q¤, nO = QT=Q¤, and Qoi =

Q¤ for all i = 1; :::; n.

Proof. All proofs are in an appendix.

Notice that the equilibrium wage can be written as wO = n[A(Q¤) ¡ C]=QT , which is

just the total surplus divided by the total supply of talent. This is intuitive, since if teams

are earning zero pro¯ts then all \rents" go to the players. Thus, maximizing social welfare

maximizes total payments to players and also maximizes the wage.

4. The Welfare Implications of a Demand for Winning

When the bonus attendance is strictly positive, a decentralized market mechanism will

generally not produce a social optimum. To develop the intuition for this, we analyze two

cases. In the ¯rst case, all teams are assumed to have an equal chance of winning games (and

the corresponding bonus attendance), regardless of the distribution of talent. Thus, a team's

talent has no a®ect on its chances of winning. In the second case, each team's probability

of winning depends on its talent level, as well as the talent levels of its opponents, teams

with more talent naturally having higher probabilities of winning. While the ¯rst case is

admittedly unrealistic, it provides an important intuition which is useful for understanding

the more complicated second case.

4.1. Random Allocation of B

Suppose all teams with positive talent levels have an equal chance of winning games,

regardless of their talent levels. Letting pi denote the expected value of Vi, if Qi > 0 for

teams i = 1:::; n, pi = 1=n, regardless of Q = (Qi; :::; Qn). We call this the random winner

rule.8

8The analysis in this section would also apply if gate-receipts were always shared equally by the home
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As above, let w be the price of a unit of talent and assume that each team must pay

w for each unit it purchases. Then, if n¡1 teams other than team i choose positive talent

levels, team i chooses its talent level Qi to solve

max
Qi

E¼(Qi) = B=n + A(Qi) ¡ wQi ¡ C (5)

This yields the ¯rst-order condition A0(Qi) = w, which clearly de¯nes a unique optimal

choice Qi = QR > 0, provided that B=n+A0(QR)¡wQR > C. If B=n+A0(QR)¡wQR < C ,

then the unique optimal choice for team i is Qi = 0, and if B=n+A0(QR)¡ wQR = C, then

either Qi = QR or Qi = 0 is optimal.

As in the previous section, de¯ne an equilibrium as a vector (w; n;Q) that satis¯es: (i) for

each team i = 1; :::; n, Qi maximizes expected pro¯ts given w and n, (ii) all terms i = 1; :::; n

earn zero expected pro¯ts, and (iii) the market for talent clears, i.e.,
Pn
i=1Qi = QT . The

next proposition shows that when B > 0, a socially optimal distribution of talent is never

an equilibrium.

Proposition 4.1. If B > 0 and (wR; nR;QR) is an equilibrium under the random winner

rule, then nR > n¤ and QR satis¯es QRi = Q¤ for all i = 1; :::; nR. (See Figure 2.)

Thus, with B > 0 there are too many teams in equilibrium, each with too little talent,

relative to a social optimal.9 The reason is simple: with B > 0, there is a negative externality

associated with entry into the sport. When a new team enters it reduces the expected value

of Vi for all previously existing teams (from 1=n to 1=(n+1), if n teams are competing before

the new entrant). Potential teams do not take this into account in making their decisions

to enter or not, so in equilibrium there are too many teams. This externality is the same as

that associated with \common pool" problems.

How might a social optimum be achieved? Since the problem is a common pool type of

and visiting teams.
9Note that an equilibrium clearly exists provided that QT=QR is an integer. As above, we avoid tedious

technical details by simply assuming that this is true.
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externality, one obvious solution is to restrict entry to n¤, or to charge an appropriate entry

fee. Therefore, we de¯ne a partial equilibrium with restricted entry as follows. For ¯xed n,

(w;Q) is a restricted equilibrium with n teams if: (i) for each team i = 1; :::; n, Qi maximizes

expected pro¯ts given w and n, (ii) all teams i = 1; :::; n earn nonnegative expected pro¯ts,

and (iii) the market for talent clears, i.e., maxnn;QQi = QT . Expected pro¯ts may be positive

because entry is not permitted. Interestingly, when the social optimum is achieved at a

restricted equilibrium, the wage w falls.

Proposition 4.2. Let (wR; nR;QR) be an equilibrium, and let (w¤R;Q
¤) be a restricted

equilibrium with n¤ teams. Then w¤R < wR.

It should be clear that w¤R = wO, that is, the restricted equilibrium wage is the same as

the equilibrium wage for the case where B = 0. Also, expected pro¯ts for each team are

E¼ = B=n¤+A(Q¤)¡w¤RQ¤¡C = B=n¤, and total league pro¯ts are equal to the bonus B.

That is, the teams, not the players, capture B. This is intuitive, since the bonus attendance

B \occurs" regardless of the distribution of talent.

Another potential solution is to price the externality by giving all of the bonus B to the

players, as part of a contingent compensation contract. That is, rather than simply pay a

wage w, each team might o®er to pay a wage w0 and also pay any bonus attendance earned

by the team to its players. It is straightforward to show that as long as players remain price-

takers in the talent market, an equilibrium with this type of contact can produce a social

optimum. A problem with the contract, however, is that it essentially makes the players the

owners of the teams, and the price-taking assumption is therefore implausible. If instead the

players act like owners and make joint decisions to maximize their expected compensation,

the externality reappears.10 Thus, entry restrictions or entry fees would appear to necessary

in order to achieve a social optimum.

4.2. Teams Compete to Win B
10Possible player decisions include entry decisions, if groups of players collectively decide to form teams.
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Now suppose that a team's relative success depends on its own talent level and on the

talent levels of all other teams, but is stochastic. Speci¯cally, assume that if there are n

teams, then there are n functions p1; :::; pn such that for each team i the expected value of

Vi given the talent levels Q = (Q1; :::; Qn) is pi(Q). Assume the functions p1; :::; pn have the

following properties: (i) for each i, if Qi = 0 and Qj > 0 for some j6= i, then pi(Q) = 0; (ii)

each pi is twice continuously di®erentiable, strictly increasing and strictly concave in Qi; (iii)

for each i, 0 · pi(Q) · 1 for all Q; (iv)
Pn
i=1 pi(Q) = 1 for all Q; and (v) for all i and j, if

Qi = Qj then pi(Q) = pj(Q). Properties (i)-(ii) are self-explanatory, and properties (iii)-(iv)

are necessary if p1; :::; pn are to be interpreted as probabilities. Property (v) simply says that

competition is symmetric across teams, so that if two teams choose the same quality level,

then they have the same expected relative performance. Clearly, (iv) and (v) imply that

if all teams choose the same talent levels then they will all have the same probabilities of

winning, that is, if Q satis¯es Qi = Q for all i = 1; :::; n, then pi(Q) = 1=n for all i = 1; :::; n.

The assumption that each pi is strictly concave in Qi is not made because we believe

it to be a good description of reality, but because it highlights the fact that competition

for bonus attendance by itself is not su±cient to overcome the tendency for a competitively

structured sports industry to provide too many rather than too few teams (this will be clear

momentarily). In section 4.3, we study pi with regions of increasing returns.

Each team is assumed to maximize expected pro¯ts. Since each team's probability of

winning games depends on all teams' talent levels, in order to determine the choice of talent

levels we must specify the teams' beliefs about each other's behavior. We assume \Nash

conjectures," that is, each team i chooses its own talent level to maximize expected pro¯ts,

taking all other teams' talent levels Q¡i = (Q1; :::; Qi¡1; Qi+1; :::; Qn), as given.11 Then,

11Thus, as in section 3, teams do not consider the constraint on the overall supply of talent when making
their decisions. That is, they do not worry about the fact that Q1; :::; Qn must satisfy

Pn
i=1 Qi · QT . This

assumption is less satisfactory than it was for the case when B = 0, because with B > 0 teams must make
conjectures about all other teams' talent levels in order to solve their optimization problems, whereas with
B = 0 they do not. One way to deal with this theoretically is to let teams' strategies be announcements of
their desired talent levels, and assume that the total talent pool is then divided in proportion to the teams'
announcements. That is, if (R1; :::; Rn) is the vector of announcements, each team i receives talent level
Qi = Ri=(

Pn
i=1 Rj ). Underlying this might be a \wage war" in which teams attempt to outbid each other

for players, ultimately settling for the talent levels Q1; :::; Qn .
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abusing notation somewhat, each i solves

max
Oi

E¼(Qi; Q¡i) = pi(Qi; Q¡i)B + A(Qi)¡ wQi ¡ C (6)

This yields the ¯rst-order condition @pi
@Qi

(Qi; Q¡i)B+A0(Qi) = w, which clearly de¯nes a

unique optimal choice Qi = QCi > 0, provided that pi(QCi; Q¡i)B+A0(QCi)¡wQCi > C . If

pi(QCi; Q¡i)B + A0(QCi)¡ wQCi < C, then the unique optimal choice for team i is Qi = 0,

and if pi(QCi; Q¡i)B + A0(QCi) ¡ wQCi = C then either Qi = QCi or Qi = 0 is optimal.

As in the previous sections, de¯ne an equilibrium as a vector (w; n;Q) that satis¯es:

(i) for each team i = 1; :::; n, Qi maximizes expected pro¯ts given w and Q¡i, (ii) all

teams i = 1; :::; n earn zero expected pro¯ts, and (iii) the market for talent clears, i.e.,
Pn
i=1Qi = QT . Also, call an equilibrium symmetric if all teams with positive talent have

the same talent level, i.e., Qi = QT=n for all i = 1; :::; n.12 The next proposition shows that

when B > 0 and p1; :::; pn satisfy properties (i)-(v), a socially optimal distribution of talent

is never an equilibrium.

Proposition 4.3. If (wC; nC;QC) is an equilibrium with competition for bonus attendance,

then nC > n¤ and QC satis¯es QCi < Q¤ for all i = 1; :::; nC.

As in the previous subsection, with B > 0 there are too many teams in equilibrium, each

with too little talent, relative to a social optimum. Thus, it is again necessary to restrict

entry or charge an entry fee in order to achieve an optimum.

Unlike the previous subsection, however, we cannot assert in general that the equilibrium

wage is greater than the wage that would prevail in a socially optimal restricted equilibrium.

In order to compare the two wages, we need to know more about the cross-partials of pi.

More speci¯cally, if (w¤C ;Q
¤) is a restricted equilibrium with n¤ teams, then wC > w¤C if

@pi
@Qi

(QCi; QC;¡i)¡ @pi
@Qi

(Q¤i ; Q
¤
¡i) is positive, or at least not too negative. In interesting special

12Unlike the previous section, in which only symmetric equilibria exist, with competition for bonus atten-
dance non-symmetric equilibria might also exist.
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cases, however, we can show that the equilibrium wage is too high. Suppose that for all

i = 1; :::; n, pi is de¯ned by pi(Qi; Q¡i) = Qbi=(
Pn
j=1Qb

j), where 0 < b · 1 (b > 0 is necessary

to insure that pi is increasing in Qi, and b · 1 is necessary to insure that pi is always

concave in Qi). While this functional form is not as general as some theorists would like,

it has a number of desirable properties, and is used extensively in economics and political

science, especially in the literatures on advertising, labor tournaments, rent seeking, voting

and campaign ¯nance.13 It provides us with the following result.

Proposition 4.4. For all i = 1; :::; n, let pi be de¯ned by pi(Qi; Q¡i) = Qbi=(
Pn
j=1Q

b
j),

with 0 < b · 1. If (wC; nC ;QC) is a symmetric equilibrium, and (w¤C;Q¤) is a symmetric

restricted equilibrium with n¤ teams, then wC > w¤C .

As noted in the proof, in general w¤C > wO, where wO is the wage that generates a social

optimum when B = 0. Recall that wO is also the wage that generates a social optimum with

B > 0 at a restricted equilibrium under the random winner rule. Thus, compared to the

random winner rule, when there is competition for the bonus the wage does not need to fall

as far to achieve a social optimum. Also, expected pro¯ts of each team at a socially optimal

restricted equilibrium are E¼ = B=n¤ + A(Q¤) ¡ w¤CQ¤ ¡ C = B[1=n¤ ¡ @pi
@Qi

(Q¤; Q¤¡i)Q
¤],

which is positive since pi is strictly concave and pi(0; Q¤¡i) = 0. Total league pro¯ts are

n¤E¼ = B[1 ¡ @pi
@Qi

(Q¤; Q¤¡i)QT]. For the special case considered in proposition 4.4, this

reduces to B=n¤. Thus, expected pro¯ts at a socially optimal restricted equilibrium are

lower than expected pro¯ts under the random winner rule (recall that under the random

winner rule, total expected pro¯ts are B).

Although free-entry equilibria are not socially optimal even when teams can compete for

the bonus, competition does improve the situation somewhat relative to the case where the

winning bonus attendance is random. Intuitively, competition for the bonus mitigates the

externality associated with entry, because teams bid more for talent than when winning is
13See, e.g., Friedman (1958), Tullock (1980), Rosen (1985), and Snyder (1989). Also, Elhodin and Quirk

(19xx) use this in their analysis of sports leagues.
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independent of talent, making entry less attractive.

Proposition 4.5. Let (wR; nR;QR) be an equilibrium under the random winner rule, and

let (wC; nC;QC) be a symmetric equilibrium with competition for bonus attendance. Then

nR > nC and QR < QC.

4.3. The Likelihood of Ruinous Competition

The previous sections show that when there are continually diminishing returns to quality

in the competition for the bonus attendance, then the competitive equilibrium results in

too many teams, each with too little quality. However, correcting this market failure is

straightforward, at least in principle, requiring only an entry restriction or entry fee. In this

section, we show that it is sometimes necessary to do more than merely restrict entry in

order to attain the social optimum.

In comparison with the assumption that each team's pi function is strictly concave, it

seems more plausible to assume that there is a range of talent levels over which a team's

probability of winning bonus attendance exhibits increasing return. For example, suppose

only the top of two teams in a league receive any bonus attendance. If the expected winning

percentage of all teams in the league is 0.5, than a small increase in any one team's quality

will have a signi¯cant impact on its probability of ¯nishing in ¯rst or second place. However,

a small increase in the quality of a team that expects to win only .33 of its games will have

virtually no e®ect on its chances of coming in ¯rst or second.14

While we cannot say much generally about equilibria in the presence of such increasing

returns, we can say quite a bit if we assume the functions pi take on the functional form used

in proposition 4.4. Thus, suppose that if n teams compete then pi(Qi;Q¡i) = Qbi=(
Pn
j=1Qbj)

for all i = 1; :::; n, where b > 0. In the proposition 4.4, we assumed that b · 1, which is
14Whitney (1993) gives another argument why the production function is likely to exhibit increasing

returns. He shows that if the odds that a team wins any single game is proportional to its relative player
talent (and games are independent events), then the probability that the team wins ¯rst place is convex in
its relative talent, for many talent levels.
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necessary and su±cient to guarantee that pi is strictly concave in Qi for all Qi > 0 (provided

that Qj > 0 for at least one j 6= i). If b > 1, however, then pi is ¯rst convex and then

concave in Qi, as suggested in the previous paragraph.

Proposition 4.6. Let pi be de¯ned by pi(Qi; Q¡i) = Qbi=
Pn
j=1Qbj) for all i = 1; :::; n,

with b > 1. Then any symmetric equilibrium (wC ; nC ;QC) satis¯es the following: (i) if

b = n¤=(n¤¡1), then nC = n¤ and QC = Q¤; (ii) if b < n¤=(n¤¡ 1), then nC > n¤ and

QC < Q¤; and (iii) if b > n¤=(n¤¡1), then nC < n¤ and QC > Q¤.

Thus, it is possible, although not very likely, that competitive equilibrium with free entry

will produce a social optimum.15 It is more likely that there will be either too many teams

each with too little talent, as in sections 3 and 4, or too few teams each with too much

talent, relative to optimum.

Part (ii) of the proposition is an extension of the results in section 4. Since n¤=(n¤¡1) > 1,

it shows that the results of section 4 sometimes hold even when the pi are not everywhere

concave. When 1 < b < n¤=(n¤¡1), pi is not everywhere concave but the results of section

4 all hold.

Part (iii) describes a new case that demands further attention. To achieve a social

optimum in this case one cannot simply impose an entry barrier or entry fee, since the

problem is too few teams, not too many. In fact, one cannot even ¯x a wage and then allow

teams to choose their talent levels as the next proposition shows.

Proposition 4.7. If b > n¤=(n¤¡1), then there does not exist a wage w that will induce

exactly n¤ teams to optimally choose talent levels Q¤.
15We again omit the details of proving the existence of an equilibrium. In fact, it is straightforward to

show that a symmetric equilibrium exists provided that QT=QC is an integer. Simply check that the second-
order conditions for each team's pro¯t maximization are satis¯ed at (wC ; nC ;QC ). These conditions require
that nC < 2b=(b¡1), so for b > 1 they impose an upper bound on the number of teams that compete in
equilibrium. For b large enough, the number of competing teams must be two.
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To achieve a social optimum in this case requires either a subsidy to entry, or explicit

restrictions on teams' talent levels, or a tax on player salaries with the proceeds refunded

to the teams in a lump sum fashion. It is straightforward to calculate the optimal entry

subsidy or talent tax (the tax rate given in the proposition is optimal under the assumption

that teams take total tax revenue as ¯xed).

Proposition 4.8. If b > n¤=(n¤¡ 1), then under either of the following policies there

exists a symmetric equilibrium (wC ; nC ;QC) with nC = n¤ and QCi = Q¤ for all i: (i)

a subsidy of S = B[b(n¤¡ 1) ¡ n¤]=(n¤)2 to each team that competes; or (ii) a tax of

t = B[b(n¤¡1) ¡ n¤]=n¤QT for each unit of talent purchased by a team, with tax proceeds

distributed equally among the competing teams.

5. Equilibrium When League Members Maximize Joint Pro¯ts

The analysis of the previous sections assumed that although individual teams sought to

maximize their pro¯ts, they did not exploit the league structure to prevent themselves from

driving expected pro¯ts to zero. In this section, we assume that leagues act to minimize

the total pro¯ts of their member teams, and explore the implications of this assumption for

league size and organizational structure. If we assume that each league has a small number

of "founders" with exclusive rights to sell franchises, this assumption makes sense even when

the number of teams in a league is itself a choice variable. The founders can be expected to

choose league size in order to maximize their combined pro¯ts from the operation of their

own teams and the sale of new franchises, which will lead them to choose the number of

teams that maximizes total league pro¯ts.

First, suppose there is one league, which can restrict entry and thereby control the

number of teams that compete. Assume also that once the number of teams in the league

is determined, the teams then compete freely for talent (the league is not assumed initially

to have the power to prohibit such competition). Also assume the probability each team i
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wins the bonus is given by the function pi(Qi;Q¡i) = Qbi=(
Pn
j=1Q

b
j), as above.16 Finally,

supposed that the league restricts entry in order to maximize the joint pro¯ts of its member

teams, assuming that the teams' subsequent competition for talent will produce a symmetric

restricted equilibrium (recall the de¯nition of a restricted equilibrium in section 3). Then, as

the next proposition shows, the league will have too few teams, each with too much talent,

relative to the social optimum.

Proposition 5.1. Let n1 be the number of teams that maximizes the joint pro¯ts of the

league's member teams as the symmetric restricted equilibrium, and let Q1 be the amount

of talent on each team at the equilibrium. Then n1 < n¤ and Q1 > Q¤.

The intuition behind this result is straightforward. Since the league is interested in joint

pro¯ts, players' salaries are viewed as costs in deciding on the number to teams. Thus, the

league wants to keep wages low. Since competition among the teams will ensure that players

are paid their marginal project, this means keeping the marginal product of talent low. This

is achieved by reducing the number of teams and increasing the talent on each team, since

the marginal product of talent on each team is decreasing in the team's total talent level.

One possible way to improve the situation is to allow the formation of new leagues that

compete with one another for talent. However, as we now show, a social optimum cannot be

achieved simply by adding leagues.17 Supposed there are L leagues, and suppose that bonus

attendance is divided equally among the leagues, so each league has its own bonus of B=L

(so total bonus attendance is ¯xed). Also, suppose each league restricts entry in order to

maximize the joint pro¯ts of its member teams, assuming that the subsequent competition

for talent will result in a restricted symmetric equilibrium in each league. Also, assume that

the leagues play Nash against one another, simultaneously choosing their sizes. Then we

have the following.
16Results similar to those below also hold for the random winner rule.
17In fact, it is possible that adding leagues can make the situation worse. We do not prove this result here

in the interests of space.
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Proposition 5.2. Suppose L leagues compete with one another for talent, each league

choosing the number of teams that maximizes its members' joint pro¯ts at a symmetric

restricted equilibrium. Let nL be the number of teams in each league at the symmetric

restricted equilibrium in which all leagues are the same size, and let QL be the corresponding

talent level of each team. Then LnL < n¤ and QL > Q¤.

There are two ways to achieve a socially optimal allocation of talent with one league.

One is to allow the league to tax player salaries, refunding the tax revenues to the teams

in a lump-sum fashion. This e®ectively allows the league to drive players' wages to zero,

at which point the league maximizes joint pro¯ts by maximizing joint revenue, and thereby

maximizes social welfare.

Proposition 5.3. Suppose there is one league, which can restrict entry and can also impose

a tax of t per unit of talent each team buys, with the tax revenues distributed across the

leagues's teams in a lump-sum fashion. Let n¿ and t¿ be the number of teams and tax rate,

respectively, that maximize the league's joint pro¯ts at a symmetric restricted equilibrium,

and let Q¿ be the amount of talent on each team at the equilibrium. Then n¿ = n¤, and

Q¿ = Q¤. Also, the equilibrium wage is w¿ = 0.

The equilibrium wage is zero only because of our assumption that players' opportunity

wages are zero. If players have a positive opportunity wage of, say, w, then the equilibrium

wage will be w. However, the number of teams, and the talent on each team, will still

be socially optimal. Of course, if equity in the compensation of owners and players is a

consideration, this solution may be viewed as less than fully satisfactory, since all rents

generated by the leagues accrue to the owners.

A second solution is to impose a ceiling on the total wage bill each team is allowed to

pay that depends on the team's total expected revenues net of ¯xed costs. That is, suppose

there exists µ 2 (0; 1) (perhaps chosen by a social planner, perhaps the results of a bargain
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collectively struck by players and team owners), such that no team i is allowed to pay more

than µ[B=n+ (1=n)
Pn
i=1A(Qi)¡C] in total salaries to its players. If this ceiling on salaries

is low enough, then a single league that can restrict entry will admit the socially optimal

number of teams.

Proposition 5.4. Suppose that for all teams i, Qi must satisfy wQi · µ[B=n+(1=n)
Pn
i=1A(Qi)¡

C]. Let nµ be the number of teams that maximizes the league's joint pro¯ts at a symmetric

restricted equilibrium, and let Qµ be the amount of talent on each team at the equilibrium.

If µ < 1 ¡ ¼1(n1)=S¤, where ¼1(n1) is the maximized value of total league pro¯ts in the

absence of a ceiling on salaries (de¯ned in Proposition 5.1), and S¤ is the maximized value

of total surplus, then nµ = n¤ and Qµ = Q¤.

The upper bound on µ exists because the league can always achieve pro¯ts greater than

or equal to the pro¯ts associated with limited entry and free competition for talent (the

arrangement in proposition 5.1). The lower bound on µ is zero, since we have assumed that

players' reservation wages are zero. If players have positive reservation wages, then the lower

bound on µ is greater than zero.

Each of these restrictions on inter-team competition for player talent leads teams and

leagues toward the social optimum because they render the problem of maximizing joint

team pro¯ts identical to the social welfare maximization problem. Clearly, any other type

of restriction that equates pro¯t maximization with surplus maximization will serve equally

well. We have explicitly examined these two restrictions because they resemble practices

that have actually been observed in the sports industry.

The pro¯t-maximizing league-imposed tax induces each team to act as a monopsonist in

the market for talent. Thus, a properly designed tax-cum-rebate would mimic the system

followed by major league baseball until the demise of the reserve clause in 1975. The upper

bound on salaries resembles the \salary cap" currently in e®ect in the National Basketball

20



Association, and the conditional salary cap in the National Football League.18 Under the

system, individual players and teams participate in a market for free agents, but each team's

total payroll is limited. Under the rule we consider, each team's total payroll is predetermined

and each player receives µ times the average product of talent for each unit of talent that

player possesses.19 Of course, we do not know whether the mix of restrictions practiced in

these leagues have actually served to increase total welfare.

6. Choosing the Rules of the Game

In sections 4 and 5, we take the parameter b in pi(Qi;Q¡i) = Qb
i=(
Pn
j=1Q

b
j) as exogenous.

It is possible, however, that b can be varied by changing the rules that govern league play.

The parameter b essentially re°ects the extent to which outcomes are uncertain rather than

deterministic. If b is close to zero, then outcomes are virtually random, while as b increases

they become increasingly deterministic; in the limit, a team with slightly more talent wins

with certainty.

Neither of these extremes seems likely to maximize fans' enjoyment from seeing their

team win. If outcomes were totally random, victory would be of particular signi¯cance by

itself. On the other hand, if there were no uncertainty over outcomes, the element of suspense

would be absent. (The ¯rst case is analogous to watching a game or series of games in which,

regardless of what happened on the ¯eld, the winner is determined by a coin toss. The second

is analogous to watching videotapes of games whose outcomes are already known.) This is

not to say that games with these features would be of no spectator interest. Fans will still

want to see highly talented athletes perform { just as they go to the opera or theater { but
18The salary caps in the NBA are somewhat °exible. Specī cally, when one of a team's free agents has

been bid away by another team, the team losing the free agent may exceed its salary caps in the year the
free agent moves.

19A di®erent sort of league policy that is sometimes proposed is revenue sharing among teams. Full revenue
sharing would clearly eliminate the ine±ciencies arising from competition for bonus attendance, since it o®ers
each team the same expected return as the case in which the bonus is randomly assigned. Thus, a social
optimum could be achieved through revenue sharing together with the appropriate entry restriction, a join
pro¯t-maximizing league would instead restrict itself to the minimum feasible number of teams, in order to
minimize costs.
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this is captured in the normal attendance function A(Q). What it does suggest, however, is

that the bonus attendance, B, may itself depend on the value of b for a particular sport.

Since leagues determine the rules of play for their members, it is natural to extend the

model by allowing them to choose the value of b. As the next proposition shows, a joint-

pro¯t-maximizing league will specify a set of rules that introduce too much randomness

relative to the social optimum, i.e., the league will choose too low a value of b.

Proposition 6.1. Suppose B is a strictly concave, twice di®erentiable function of b, which

achieves its maximum at b¤ > 0. Let (bb; nb) be the degree of determinism and number of

teams that maximize the joint pro¯ts of league's member teams at the symmetric restricted

equilibrium. Then b¤ is the socially optimal degree of determinism, and nb < n¤ and bb < b¤.

The intuition for this result is straightforward: if the degree of determinism is less than

b¤, then increasing the degree of determinism increases the size of the bonus, but it also

increases inter-team competition for talent. This drives up wages, and therefore reduces

teams' pro¯ts. The league therefore chooses b < b¤. From a social point of view, however,

wages are not costs but merely transfers from team owners to players, so the socially optimal

value of b is b¤.

7. Conclusion

Free entry into unrestricted competition among professional sports teams is unlikely to

sustain the socially optimal number of teams when the revenue of each team depends in

part on its performance relative to its competitors. When there are diminishing returns to

team quality, the unrestricted symmetric equilibrium involves too many teams, each with

too little talent, relative to the optimum. This can be interpreted either as referring to the

(endogeneous) rooster size of each professional team, as was the case in the early years of

baseball, or as referring to the total number of players under contract to an organization at
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any level of play, as in the case of baseball and hockey teams' minor league systems today.

On the other hand, when there is a range of talent levels that exhibit increasing returns,

as seems plausible in most sports, freely competing teams will tend to stockpile too much

talent. The equilibrium number of teams will be below the social optimum, so that no form of

simple entry restriction can improve the situation. In this case, certain types of restrictions on

inter-team competition in the market for players can induce a welfare-increasing allocation of

talent among incumbent and newly entering teams. In order for those restrictions to induce

a social optimum, they must render pro¯t-maximizing choices by teams and leagues to be

identical to the corresponding welfare-maximizing choices. The most straightforward such

rule is a predetermined upper bound on the wage bill for each team that is calculated as a

constant share of total team revenue.
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Appendix

Proof of Proposition 3.1. If team i maximizes pro¯ts by choosing Qi = QO > 0 and also

earns zero pro¯ts, then ¼(QO) = A(QO)¡A0(QO)QO¡C = 0. By (2) above, this implies that

QO = Q¤. Thus, (wO; nO;QO) is an equilibrium only if Qoi = Q¤ for all i = 1; :::; n. Also,

wO = [A(Q¤)¡ C]=Q¤. Finally, by part (iii) of the de¯nition of an equilibrium, nOQ¤ = QT ,

so (wO; nO;QO) is an equilibrium only if nO = QT=Q¤. Thus, the only possible equilibrium

has wO = [A(Q¤) ¡ C]=Q¤, nO = QT=Q¤, and Qoi = Q¤ for all i = 1; :::; n, and it is

straightforward to verify that this is in fact an equilibrium.

Proof of Proposition 4.1. If each team i = 1; :::; nR maximizes expected pro¯ts by

choosing Qi = QR > 0 and also earns zero expected pro¯ts, then E¼(QR) = B=nR +

A(QR) ¡ A0(QR)QR ¡ C = 0, or A0(QR) = [A(QR) ¡ C]=QR ¡B=(nRQR). Thus, A0(QR) >

[A(QR) ¡ C]=QR, which means that Qi < Q¤. Thus, (wR; nR;QR) is an equilibrium only

if QRi = QR < Q¤ for all i = 1; :::; n. By part (iii) of the de¯nition of an equilibrium,

nRQR = QT, so (WR; nR; QR) is an equilibrium only if nR > QT=Q¤ = n¤.

Proof of Proposition 4.2. The ¯rst-order condition for each team's expected pro¯t max-

imization problem implies w¤R = A0(Q¤). From proposition 4.1 above, if (wR; nR;QR)

is an equilibrium, then wR = A0(QR) and QR < Q¤. And A is strictly concave, so

A0(QR) > A0(Q¤), and thus wR > w¤R.

Proof of Proposition 4.3. If team i maximizes expected pro¯ts by choosing QCi > 0

and also earns zero expected pro¯ts, then E¼(QCi; QC;¡i) = pi(QCi; QC;¡i)B + A(QCi) ¡
[ @pi@Qi

(QCi; QC;¡i)B+A0(QCi)]QCi¡C = 0. Rearranging yields A0(QCi)¡ [A(QCi)¡C ]=QCi =

[pi(QCi; QC;¡i)¡ @pi
@Qi

(QCi; QC;¡i)]B. Since pi is strictly increasing and strictly concave in Qi

and pi(Q) = 0 when Qi = 0, @pi
@Qi

(QCi; QC;¡i) < pi(QCi; QC;¡i)=QCi. Thus, A0(QCi) ¡
[A(QCi) ¡ C]=QCi > 0, which means that QCi < Q¤. Thus, (wC; nC ;QC) is an equilibrium

only if QCi < Q¤ for all i = 1; :::; n. By part (iii) of the de¯nition of an equilibrium,
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Pn
i=1QCi = QT ; and

Pn
i=1QCi < nCQ¤, so (wC ; nC;QC) is an equilibrium on if nC >

QT=Q¤ = n¤.

Proof of Proposition 4.4. Given the functional form of pi, it is straightforward to show

that @pi
@Qi

(Qi; Q¡i) = bpi(Qi; Q)[1¡ pi(Qi; Qi)]=Qi for all Qi > 0 (di®erentiate with respect to

Qi, divide the result by Qi, and substitute). Thus, the ¯rst-order condition for each team's

expected pro¯t maximization problem implies that at a symmetric restricted equilibrium

W ¤C = Bb(n¤¡1)=((n¤)2Q¤) + A0(Q¤) = Bb(n¤¡1)=(n¤QT) + A0(Q¤). (Note that if w¤C is

the wage that generates a social optimum under the random winner rule, then in general

w¤C > wO). From proposition 4.3 above, if (wC; nC;QC) is a symmetric equilibrium, then

wC = Bb(nC ¡ 1)=(n2
CQC) + A0(QC) = Bb(nC ¡ 1)=(nCQT) + A0(QC) and nC > n¤. Since

A is strictly concave in Qi, A0(QC) > A0(Q¤). Also, nC > n¤ implies that (nC ¡ 1)=nC >

(n¤¡1)=n¤. Thus, wC > w¤C .

Proof of Proposition 4.5. By the de¯nition of equilibrium, A0(QR) ¡ [A(QR)¡C ]=QR =

B=QT and A0(QC)¡ [A(QC)¡C ]=QC = B=QT ¡B[ @pi@Qi
(QC; QC;¡i) (see the proofs of propo-

sitions 4.1 and 4.3, respectively), so A0(QR)¡ [A(QR)¡C]=QR > A0(QC)¡ [A(QC)¡C ]=QC .

Also, QR < Q¤ and QC < Q¤, where Q¤ solves [A(Q¤)¡C ]=Q¤ = A0(Q¤). Since A is strictly

concave and C > 0, A0(Q)¡ [A(Q)¡ C]=Q is strictly decreasing in Q for all Q < Q¤ (this is

easily veri¯ed by di®erentiation), so QR < QC . And, since nRQR = nCQC = QT , nR > nC .

Proof of Proposition 4.6. Recall from the proposition 4.4 that @pi
@Qi

(Qi; Q¡i) = bpi(Qi; Q¡i)[1¡
pi(Qi; Q¡i)]=Qi for all Qi > 0. Thus, the ¯rst-order condition for each team's expected

pro¯t maximization problem implies that at a symmetric equilibrium, Bb(nC¡ 1)=(n2
CQC)+

A0(QC) = wC . The zero-pro¯t condition is B=nC + A(QC) ¡ C ¡ wCQC = 0, and market-

clearing requires that wCQC = QT , so combining these with the ¯rst-order conditions and

eliminating wC and nC yields A0(QC)¡ [A(QC)¡C]=QC = B(1¡ b)=QT +QCBb=(Q2
T ). The

left-hand side of this equation is zero at Q¤, positive and strictly decreasing in QC for all
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QC < Q¤, and negative for all QC > Q¤. The right-hand side is negative at QC = 0 (since

b > 1), and strictly increasing in QC. Thus, substituting, if b = n¤=(n¤¡1) then the equation

is uniquely satis¯ed at QC = Q¤. If b < n¤=(n¤¡1) then the equation is uniquely satis¯ed

at some QC < Q¤, and if b > n¤=(n¤¡1) then the equation is satis¯ed only for QC > Q¤ .

Proof of Proposition 4.7. Recall from the proof of proposition 4.6 that at a symmetric

equilibrium the ¯rst-order condition for each team's expected pro¯t maximization problem

can be written Bb(n¡1)=(n2Q) + A0(Q) = w. Thus if w is chosen so that exactly n¤ teams

optimally choose Q¤, then Bb(n¤¡1)=((n¤)2Q¤) + A0(Q¤) = w. But this implies that each

team's expected pro¯ts are E¼ = A0(Q¤)Q¤ ¡ [A(Q¤) ¡ C ] + B[n¤ ¡ b(n¤¡ 1)]=(n¤)2 =

B[n¤ ¡ b(n¤¡ 1)]=(n¤)2, which is negative if b > n¤=(n¤¡1). Each team has the option

of choosing Q = 0 and earning zero pro¯ts, so choosing Q¤ and earning negative expected

pro¯ts is not optimal.

Proof of Proposition 4.8. In the proof of proposition 4.7, it is shown that if n¤ teams

compete and w is set to try to induce all teams to choose quality level Q¤, then each

team would su®er expected losses equal to B[n¤ ¡ b(n¤¡1)]=(n¤)2. If a subsidy of S =

B[n¤ ¡ b(n¤¡1)]=(n¤)2 is paid to each team, then each team's expected pro¯ts are zero,

and there exists a symmetric equilibrium in which n¤ teams each choose quality level Q¤ .

Similarly, if a tax of B[n¤ ¡ b(n¤¡1)]=(n¤QT ) is levied on each unit of talent purchased by

a team, then a total of B[n¤ ¡ b(n¤¡1)]=n¤ in revenue is raised. If this revenue is divided

equally across teams, then each team receives a tax rebate of B[n¤¡b(n¤¡1)]=(n¤)2, expected

pro¯ts are again zero, and therefore there again exists a symmetric equilibrium in which n¤

teams each choose quality level Q¤.

Proof of Proposition 5.1. If the league admits n teams, then the symmetric restricted

equilibrium, Qi = QT=n for each team i = 1; :::; n, and the wage is w = Bb(n¡1)=(n2Q) +

A0(Q) (see the proof of proposition 4.6). Substituting for Q in the wage equation yields
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w1(n) = Bb(n¡1)=(nQT ) + A0(QT=n). Thus, the league members' joint pro¯ts are ¼1 =

B+nA(Q)¡nw1(n)Q¡nC = B+ nA(QT=n)¡w1(n)QT ¡nC. Pretending for the moment

that n is a continuous variable, and di®erentiating ¼1 with respect to n, the ¯rst-order

condition for an interior maximum at n1 is A(QT=n1)¡ C ¡ A0(QT=n1)QT=n1 = w01(n1)QT .

Also, di®erentiating w1 yields w01(n) = [Bb=QT ¡ A00(QT=n)QT ]=n2, which is positive, so

A(QT=n1)¡C ¡A0(QT=n1)QT=n1 > 0. By de¯nition, n¤ uniquely satis¯es A(QT=n¤)¡C =

A0(QT=n¤)QT=n¤; also, A(QT=n) ¡ C ¡ A0(QT=n)QT=n is decreasing in n. Thus, n1 < n¤,

and since n1Q1 = n¤Q¤ = QT , Q1 > Q¤. (Note: It is possible that there is no interior

solution to the league's pro¯t maximization problem, in which case the league's optimal

choice is n1 = 1 < n¤. This solution is obviously unrealistic, and is possible only because

of our simplifying assumptions that A and B are independent of the number of teams, and

that even one team would act as a price-taker with respect to the wage.)

Proof of Proposition 5.2. Suppose each league l admits nl teams, l = 1; :::; L. Then

given a symmetric restricted equilibrium in each league, Qli = Ql(n) for all i = 1; :::; nl and

all l = 1; :::; L,
PL
l=1Ql(n) = QT, and the wage satis¯es wL(n) = Bb(nl¡1)=(Ln2

lQl(n)) +

A0(Ql(n) for all l = 1; :::; L. Joint pro¯ts in each league l are ¼l(n) = B=L+ nlA(Ql(n)) ¡
nlwL(n)Ql(n)¡nlC , so pretending for the moment that nl is a continuous variable, the ¯rst-

order condition for an interior maximum at nl can be written A(Ql)¡ C = ¡A0(Ql)nl @Ql@nl
+

wLQl + nLQl
@wL
@nl

+ nlwL@Ql@nl
. If all leagues choose the same number of teams, so nl = nL for

all l = 1; :::; L, then Ql = QT=(LnL) for all l, wL(n) = Bb(nL¡1)=(nLQT) + A0(QT=(LnL)),

and league l's ¯rst-order condition becomes A(QT=LnL))¡C = [QT=(LnL)]A0(QT=(LnL))+

[Bb(nL ¡ 1)=(nLQT)][QT=(LnL) + nL@Ql@nl
] + (QT=L) @wL@nl

. It is straightforward but tedious

to show that [QT=(LnL) + nL@Ql@nl
] and @wL

@nl
are both positive (di®erentiate the ¯rst-order

condition for league l, the ¯rst-order condition for any league j6= l, and the market-clearing

condition
PL
l=1Ql(n) = QT, with respect to nl, evaluate the three equations at any n such

that nl = nL for all l, and solve the equations simultaneously). Thus, A(QT=(LnL)) ¡
C ¡ [QT=(LnL)]A0(QT=(LnL)) > 0. By de¯nition, n¤ uniquely satis¯es A(QT=n¤) ¡ C =
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A0(QT=n¤)QT=n¤; also, A(QT=n)¡C ¡A0(QT=n)QT=n > 0 is decreasing in n. Thus, LnL <

n¤, and since LnLQL = n¤Q¤ = QT , QL > Q¤. (Note: As in proposition 5.1, corner solutions

with nL = 1 cannot be ruled out. And, of course, if L = n¤, then nL = 1 and LnL = n¤. As

noted in the proof of proposition 5.1, however, this solution is quite arti¯cial.)

Proof of Proposition 5.3. If the league admits n teams, and chooses a tax rate of ¿ ,

then the expected pro¯t of each team i given the talent levels Q = (Q1; :::; Qn) is E¼(Q) =

Bpi(Q) +A(Qi) ¡ (w + ¿ )Qi ¡C + (¿ =n)
Pn
i=1Qi. At the symmetric restricted equilibrium,

Qi = QT=n = Q for each team i = 1; :::; n, and the wage is w = Bb(n¡ 1)=(n2Q) +

A0(Q) ¡ ¿ (1 ¡ 1=n). Substituting for Q in the wage equation yields w1(n; ¿ ) = Bb(n¡
1)=(nQT ) + A0(QT=n) ¡ ¿(1 ¡ 1=n). Thus, the league members' joint pro¯ts are ¼1 =

B+nA(Q)¡nw1(n; ¿ )Q¡nC = B+nA(QT=n)¡w1(n; ¿ )QT ¡nC . Di®erentiating ¼1 with

respect to ¿ yields @¼1
@¿ = ¡@w1

@¿ (n; ¿)QT = QT (1¡1=n). This is always positive, so the league

chooses ¿ as large as possible. Given that the lowest possible wage is 0 (at wages below 0, no

talent is forthcoming), this means choosing ¿ = [Bb(n¡1)=(nQT )+A0(Q)]=(1¡1=n), so that

w1(n; ¿) = 0. Given that wages are zero, total joint pro¯ts are ¼(n) = B + nA(QT=n)¡nC ,

which is the same as total surplus (recall equation 1). Thus the league maximizes joint

pro¯ts by choosing n¿ = n¤ and Q¿ = Q¤ (Note: This result also holds if teams take

total tax revenue as ¯xed. The only di®erence is that the equilibrium wage equation is

w1(n; ¿) = Bb(n¡1)=(nQT ) + A0(QT=n)¡ ¿ .)

Proof of Proposition 5.4. If the league admits n teams, there are two possibilities at the

symmetric restricted equilibrium. If the ceiling on salaries is not binding, then the situation

is exactly as in proposition 5.1, and the league's total pro¯ts are ¼1(n) = B + nA(QT=n) ¡
w1(n)QT¡nC , where w1(n) = Bb(n¡1)=(nQT )+A0(QT=n). On the other hand, if the ceiling

on salaries is binding, then wQT=n = µ[B=n +A(QT=n) ¡ C], and the league's total pro¯ts

are B=n + A(QT=n) ¡ wQTn ¡ C = (1 ¡ µ)[B=n + A(QT=n) ¡ C], and the league's total

pro¯ts are ¼µ(n) = (1¡ µ)[B + nA(QT=n) ¡ nC]. Clearly, the ceiling on salaries is binding
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at n if and only if w1(n)QT=n > µ[B=n +A(QT=n)¡ C], that is, if and only ¼µ(n) > ¼1(n).

Recall from section 2 that B + nA(QT=n) ¡ nC is total surplus. Thus, ¼µ(n) is equal

to (1 ¡ µ) times total surplus, so ¼µ(n) is uniquely maximized at n = n¤, Also, recall

from proposition 5.1 that ¼1(n) is maximized at n1 < n¤. Thus, there are three cases: (1)

¼µ(n¤) < ¼1(n1), in which case the league's optimal choice is nµ = n1 (the salary constraint

is not binding at n1, since ¼µ(n1) < ¼µ(n¤), and it might or might not be binding at n¤);

(2) ¼µ(n¤) = ¼1(n1), in which case the league is indi®erent between n¤ and n1 (the salary

constraint is not binding at n1, since ¼µ(n1) < ¼µ(n¤), but it is binding at n¤, since ¼1(n¤) <

¼1(n1)); or (3) ¼µ(n¤) > ¼1(n¤) > ¼1(n1), in which case the league's optimal choice is nµ = n¤

(the salary constraint might or might not be binding at n1, but it is binding at n¤, since

¼1(n¤) < ¼1(n1)). Thus, in order to guarantee that the league chooses nµ = n¤, µ should

be set so that ¼µ(n¤) > ¼1(n1), or, letting S¤ be the maximized value of total surplus,

µ < 1¡ ¼1(n1)=S¤.

Proof of Proposition 6.1. Total Social surplus is B(b) + nA(QT=n)¡ nC , so it is easily

seen that this is maximized by choosing (b; n) = (b¤; n¤), where b¤ solves B 0(b¤) = 0 and n¤

satis¯es A(QT=n¤)¡ C = A0(QT=n¤)QT=n¤.

Suppose the league chooses degree of determinism b, and admits n teams. Then at

the symmetric restricted equilibrium, Qi = QT=n for each team i = 1; :::; n, the wage is

w1(n) = B(b)b(n¡1)=(nQT ) + A0(QT=n), and the league members' joint pro¯ts are ¼1 =

B(b) + nA(QT=n) ¡ w1(n)QT ¡ nC . Di®erentiating ¼1 with respect to b and n (again, we

ignore for the moment that n is discrete), the ¯rst-order conditions for an interior maximum

at (b; nb) are B 0(b) = B(b)(nb¡1)=[nb¡ b(nb ¡ 1)], and A(QT=n1)¡C ¡ A0(QT=n1)QT=n1 =

[B(b)b¡A00(QT=n)Q2
T ]=n2 > 0. Also, di®erentiating ¼1 twice with respect to b and evaluating

the result at (bb; nb) yields

@¼2
1

@b
(bb; nb) =

B 00(bb)[nb ¡ bb(nb¡1)]2 ¡ 2(nb¡1)B(bb)
nb[nb ¡ bb(nb¡1)]

The numerator of this expression is clearly negative, so @¼2
1

@b (bb; nb) < 0 if and only if the
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demoninator is positive, which holds if and only if bb < nb=(nb¡1). Substituting this back

into the ¯rst-order conditions yields B 0(bb) > 0, which implies that bb < b¤. Finally, the

proof that nb < n¤ follows exactly the same logic as the proof of proposition 5.1 (use the

fact that A(QT=n)¡ C ¡ A0(QT=n)QT=n is decreasing in n).
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Figure 2
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